Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 155: 213676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944446

RESUMO

The synergy between eco-friendly biopolymeric films and printed devices leads to the production of plant-wearable sensors for decentralized analysis of pesticides in precision agriculture and food safety. Herein, a simple method for fabrication of flexible, and sustainable sensors printed on cellulose acetate (CA) substrates has been demonstrated to detect carbendazim and paraquat in agricultural, water and food samples. The biodegradable CA substrates were made by casting method while the full electrochemical system of three electrodes was deposited by screen-printing technique (SPE) to produce plant-wearable sensors. Analytical performance was assessed by differential pulse (DPV) and square wave voltammetry (SWV) in a linear concentration range between 0.1 and 1.0 µM with detection limits of 54.9 and 19.8 nM for carbendazim and paraquat, respectively. The flexible and sustainable non-enzymatic plant-wearable sensor can detect carbendazim and paraquat on lettuce and tomato skins, and also water samples with no interference from other pesticides. The plant-wearable sensors had reproducible response being robust and stable against multiple flexions. Due to high sensitivity and selectivity, easy operation and rapid agrochemical detection, the plant-wearable sensors can be used to detect biomarkers in human biofluids and be used in on-site analysis of other hazardous chemical substances.


Assuntos
Praguicidas , Dispositivos Eletrônicos Vestíveis , Humanos , Praguicidas/análise , Paraquat/análise , Inocuidade dos Alimentos , Agricultura , Água/análise
2.
Int J Biol Macromol ; 228: 23-39, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565824

RESUMO

Hops' (Humulus lupulus L.) phytochemicals are well known for their bioactivity. In the present study, the functional properties of hop extract rich in ß-acids, as potassium-salts structures (KBA), were investigated to develop a sustainable active food packaging. Polylactic acid (PLA)-based sheets were incorporated with increasing concentrations of hop extract (0.1-5 % w/w in terms of KBA) and characterized through performance and bioactive properties. KBA-added sheets presented decreased crystallinity and affected mechanical and thermal properties, especially with higher KBA amounts. The sheets' surface hydrophobicity gradually decreased by KBA-extract addition, while the water vapor permeability was not affected. A Fickian diffuse behavior and a better fit to application in fatty foods were observed during release tests. UV-blocking and antioxidant properties were improved by KBA incorporation. Furthermore, results from antibacterial assays revealed great susceptibility of Staphylococcus aureus and Listeria monocytogenes towards sheets added with 5 % of KBA. Moreover, the atomic force microscopy (AFM) observations revealed that KBA led to strong effects on the cell membranes of both bacteria, including disruption of membrane integrity and cell death. Therefore, this study is a sign of great prospects of hop ß-acids use, as KBA compound, in the production of sustainable active packaging for safe food shelf-life extension.


Assuntos
Embalagem de Alimentos , Humulus , Embalagem de Alimentos/métodos , Humulus/química , Antibacterianos/farmacologia , Poliésteres , Ácidos
3.
Food Res Int ; 160: 111676, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076387

RESUMO

Essential oils (EOs) have been considered potential green additives for active food packaging. However, sub-lethal concentrations of EOs may lead to bacterial resistance, which is a concern. In this sense, the effects of 1% (GEO1) and 10% (GEO10) of garlic EO in cellulose acetate-based films regarding homologous resistance in Listeria innocua were investigated after incubation at 37 °C/24 h and 7 °C/10 d. The films were also characterized and tested on sliced mozzarella cheese as interfold packaging for 8-days storage at 7 °C. The EO did not alter the mechanical properties of the films nor their thermal degradation profile. However, GEO10 was less permeable to water vapor than GEO1. When tested against L. innocua, the incubation at 7 °C enhanced the films' antimicrobial effect: log reductions of 4.3 and 5.7 were obtained for GEO1 and GEO10, respectively. Moreover, 86.3% of L. innocua cells were injured at sub-lethal level when exposed to GEO10. Despite this, no occurrence of homologous resistance was found. When the active films were tested on cheese against the natural microbiota, they resulted in slices of mozzarella with fewer contaminants, however the reduction was not significant. Nevertheless, we considered this an important finding to the food industry since this work suggested that GEO is a safe active compound from the point of view of homologous resistance to be used against Listeria.


Assuntos
Alho , Listeria , Óleos Voláteis , Celulose/análogos & derivados , Microbiologia de Alimentos , Óleos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...